\(\int (a+a \sec (c+d x))^2 \sqrt {e \sin (c+d x)} \, dx\) [116]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 138 \[ \int (a+a \sec (c+d x))^2 \sqrt {e \sin (c+d x)} \, dx=-\frac {2 a^2 \sqrt {e} \arctan \left (\frac {\sqrt {e \sin (c+d x)}}{\sqrt {e}}\right )}{d}+\frac {2 a^2 \sqrt {e} \text {arctanh}\left (\frac {\sqrt {e \sin (c+d x)}}{\sqrt {e}}\right )}{d}+\frac {a^2 E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{d \sqrt {\sin (c+d x)}}+\frac {a^2 \sec (c+d x) (e \sin (c+d x))^{3/2}}{d e} \]

[Out]

a^2*sec(d*x+c)*(e*sin(d*x+c))^(3/2)/d/e-2*a^2*arctan((e*sin(d*x+c))^(1/2)/e^(1/2))*e^(1/2)/d+2*a^2*arctanh((e*
sin(d*x+c))^(1/2)/e^(1/2))*e^(1/2)/d-a^2*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*Ellipti
cE(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2))*(e*sin(d*x+c))^(1/2)/d/sin(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3957, 2952, 2721, 2719, 2644, 335, 304, 209, 212, 2651} \[ \int (a+a \sec (c+d x))^2 \sqrt {e \sin (c+d x)} \, dx=-\frac {2 a^2 \sqrt {e} \arctan \left (\frac {\sqrt {e \sin (c+d x)}}{\sqrt {e}}\right )}{d}+\frac {2 a^2 \sqrt {e} \text {arctanh}\left (\frac {\sqrt {e \sin (c+d x)}}{\sqrt {e}}\right )}{d}+\frac {a^2 \sec (c+d x) (e \sin (c+d x))^{3/2}}{d e}+\frac {a^2 E\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{d \sqrt {\sin (c+d x)}} \]

[In]

Int[(a + a*Sec[c + d*x])^2*Sqrt[e*Sin[c + d*x]],x]

[Out]

(-2*a^2*Sqrt[e]*ArcTan[Sqrt[e*Sin[c + d*x]]/Sqrt[e]])/d + (2*a^2*Sqrt[e]*ArcTanh[Sqrt[e*Sin[c + d*x]]/Sqrt[e]]
)/d + (a^2*EllipticE[(c - Pi/2 + d*x)/2, 2]*Sqrt[e*Sin[c + d*x]])/(d*Sqrt[Sin[c + d*x]]) + (a^2*Sec[c + d*x]*(
e*Sin[c + d*x])^(3/2))/(d*e)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2644

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2651

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b*Sin[e +
f*x])^(n + 1))*((a*Cos[e + f*x])^(m + 1)/(a*b*f*(m + 1))), x] + Dist[(m + n + 2)/(a^2*(m + 1)), Int[(b*Sin[e +
 f*x])^n*(a*Cos[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2952

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
 /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 3957

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[(g*Co
s[e + f*x])^p*((b + a*Sin[e + f*x])^m/Sin[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int (-a-a \cos (c+d x))^2 \sec ^2(c+d x) \sqrt {e \sin (c+d x)} \, dx \\ & = \int \left (a^2 \sqrt {e \sin (c+d x)}+2 a^2 \sec (c+d x) \sqrt {e \sin (c+d x)}+a^2 \sec ^2(c+d x) \sqrt {e \sin (c+d x)}\right ) \, dx \\ & = a^2 \int \sqrt {e \sin (c+d x)} \, dx+a^2 \int \sec ^2(c+d x) \sqrt {e \sin (c+d x)} \, dx+\left (2 a^2\right ) \int \sec (c+d x) \sqrt {e \sin (c+d x)} \, dx \\ & = \frac {a^2 \sec (c+d x) (e \sin (c+d x))^{3/2}}{d e}-\frac {1}{2} a^2 \int \sqrt {e \sin (c+d x)} \, dx+\frac {\left (2 a^2\right ) \text {Subst}\left (\int \frac {\sqrt {x}}{1-\frac {x^2}{e^2}} \, dx,x,e \sin (c+d x)\right )}{d e}+\frac {\left (a^2 \sqrt {e \sin (c+d x)}\right ) \int \sqrt {\sin (c+d x)} \, dx}{\sqrt {\sin (c+d x)}} \\ & = \frac {2 a^2 E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{d \sqrt {\sin (c+d x)}}+\frac {a^2 \sec (c+d x) (e \sin (c+d x))^{3/2}}{d e}+\frac {\left (4 a^2\right ) \text {Subst}\left (\int \frac {x^2}{1-\frac {x^4}{e^2}} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{d e}-\frac {\left (a^2 \sqrt {e \sin (c+d x)}\right ) \int \sqrt {\sin (c+d x)} \, dx}{2 \sqrt {\sin (c+d x)}} \\ & = \frac {a^2 E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{d \sqrt {\sin (c+d x)}}+\frac {a^2 \sec (c+d x) (e \sin (c+d x))^{3/2}}{d e}+\frac {\left (2 a^2 e\right ) \text {Subst}\left (\int \frac {1}{e-x^2} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{d}-\frac {\left (2 a^2 e\right ) \text {Subst}\left (\int \frac {1}{e+x^2} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{d} \\ & = -\frac {2 a^2 \sqrt {e} \arctan \left (\frac {\sqrt {e \sin (c+d x)}}{\sqrt {e}}\right )}{d}+\frac {2 a^2 \sqrt {e} \text {arctanh}\left (\frac {\sqrt {e \sin (c+d x)}}{\sqrt {e}}\right )}{d}+\frac {a^2 E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{d \sqrt {\sin (c+d x)}}+\frac {a^2 \sec (c+d x) (e \sin (c+d x))^{3/2}}{d e} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 11.75 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.22 \[ \int (a+a \sec (c+d x))^2 \sqrt {e \sin (c+d x)} \, dx=-\frac {2 a^2 \cos ^4\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x) \sec ^4\left (\frac {1}{2} \arcsin (\sin (c+d x))\right ) \sqrt {e \sin (c+d x)} \left (3 \arctan \left (\sqrt {\sin (c+d x)}\right ) \sqrt {\cos ^2(c+d x)}-3 \text {arctanh}\left (\sqrt {\sin (c+d x)}\right ) \sqrt {\cos ^2(c+d x)}-3 \sin ^{\frac {3}{2}}(c+d x)+\sqrt {\cos ^2(c+d x)} \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {3}{2},\frac {7}{4},\sin ^2(c+d x)\right ) \sin ^{\frac {3}{2}}(c+d x)\right )}{3 d \sqrt {\sin (c+d x)}} \]

[In]

Integrate[(a + a*Sec[c + d*x])^2*Sqrt[e*Sin[c + d*x]],x]

[Out]

(-2*a^2*Cos[(c + d*x)/2]^4*Sec[c + d*x]*Sec[ArcSin[Sin[c + d*x]]/2]^4*Sqrt[e*Sin[c + d*x]]*(3*ArcTan[Sqrt[Sin[
c + d*x]]]*Sqrt[Cos[c + d*x]^2] - 3*ArcTanh[Sqrt[Sin[c + d*x]]]*Sqrt[Cos[c + d*x]^2] - 3*Sin[c + d*x]^(3/2) +
Sqrt[Cos[c + d*x]^2]*Hypergeometric2F1[3/4, 3/2, 7/4, Sin[c + d*x]^2]*Sin[c + d*x]^(3/2)))/(3*d*Sqrt[Sin[c + d
*x]])

Maple [A] (verified)

Time = 14.07 (sec) , antiderivative size = 220, normalized size of antiderivative = 1.59

method result size
default \(-\frac {a^{2} \left (2 \sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticE}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right ) e -\sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right ) e +4 \cos \left (d x +c \right ) \sqrt {e}\, \sqrt {e \sin \left (d x +c \right )}\, \arctan \left (\frac {\sqrt {e \sin \left (d x +c \right )}}{\sqrt {e}}\right )-4 \cos \left (d x +c \right ) \sqrt {e}\, \sqrt {e \sin \left (d x +c \right )}\, \operatorname {arctanh}\left (\frac {\sqrt {e \sin \left (d x +c \right )}}{\sqrt {e}}\right )+2 e \cos \left (d x +c \right )^{2}-2 e \right )}{2 \cos \left (d x +c \right ) \sqrt {e \sin \left (d x +c \right )}\, d}\) \(220\)
parts \(-\frac {a^{2} e \sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \sqrt {\sin \left (d x +c \right )}\, \left (2 \operatorname {EllipticE}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )-\operatorname {EllipticF}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )\right )}{\cos \left (d x +c \right ) \sqrt {e \sin \left (d x +c \right )}\, d}+\frac {a^{2} e \sqrt {\cos \left (d x +c \right )^{2} e \sin \left (d x +c \right )}\, \left (2 \sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticE}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )-\sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )-2 \cos \left (d x +c \right )^{2}+2\right )}{2 \sqrt {-e \sin \left (d x +c \right ) \left (\sin \left (d x +c \right )-1\right ) \left (1+\sin \left (d x +c \right )\right )}\, \cos \left (d x +c \right ) \sqrt {e \sin \left (d x +c \right )}\, d}-\frac {2 a^{2} \sqrt {e}\, \left (\arctan \left (\frac {\sqrt {e \sin \left (d x +c \right )}}{\sqrt {e}}\right )-\operatorname {arctanh}\left (\frac {\sqrt {e \sin \left (d x +c \right )}}{\sqrt {e}}\right )\right )}{d}\) \(334\)

[In]

int((a+a*sec(d*x+c))^2*(e*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/cos(d*x+c)/(e*sin(d*x+c))^(1/2)*a^2*(2*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)*Elli
pticE((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))*e-(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)*Ellip
ticF((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))*e+4*cos(d*x+c)*e^(1/2)*(e*sin(d*x+c))^(1/2)*arctan((e*sin(d*x+c))^(1/2
)/e^(1/2))-4*cos(d*x+c)*e^(1/2)*(e*sin(d*x+c))^(1/2)*arctanh((e*sin(d*x+c))^(1/2)/e^(1/2))+2*e*cos(d*x+c)^2-2*
e)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.39 (sec) , antiderivative size = 677, normalized size of antiderivative = 4.91 \[ \int (a+a \sec (c+d x))^2 \sqrt {e \sin (c+d x)} \, dx=\left [\frac {2 i \, \sqrt {2} a^{2} \sqrt {-i \, e} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 2 i \, \sqrt {2} a^{2} \sqrt {i \, e} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - 2 \, a^{2} \sqrt {-e} \arctan \left (\frac {{\left (\cos \left (d x + c\right )^{2} - 6 \, \sin \left (d x + c\right ) - 2\right )} \sqrt {e \sin \left (d x + c\right )} \sqrt {-e}}{4 \, {\left (e \cos \left (d x + c\right )^{2} - e \sin \left (d x + c\right ) - e\right )}}\right ) \cos \left (d x + c\right ) + a^{2} \sqrt {-e} \cos \left (d x + c\right ) \log \left (\frac {e \cos \left (d x + c\right )^{4} - 72 \, e \cos \left (d x + c\right )^{2} - 8 \, {\left (7 \, \cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right )^{2} - 8\right )} \sin \left (d x + c\right ) - 8\right )} \sqrt {e \sin \left (d x + c\right )} \sqrt {-e} + 28 \, {\left (e \cos \left (d x + c\right )^{2} - 2 \, e\right )} \sin \left (d x + c\right ) + 72 \, e}{\cos \left (d x + c\right )^{4} - 8 \, \cos \left (d x + c\right )^{2} - 4 \, {\left (\cos \left (d x + c\right )^{2} - 2\right )} \sin \left (d x + c\right ) + 8}\right ) + 4 \, \sqrt {e \sin \left (d x + c\right )} a^{2} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )}, \frac {2 i \, \sqrt {2} a^{2} \sqrt {-i \, e} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 2 i \, \sqrt {2} a^{2} \sqrt {i \, e} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - 2 \, a^{2} \sqrt {e} \arctan \left (\frac {{\left (\cos \left (d x + c\right )^{2} + 6 \, \sin \left (d x + c\right ) - 2\right )} \sqrt {e \sin \left (d x + c\right )} \sqrt {e}}{4 \, {\left (e \cos \left (d x + c\right )^{2} + e \sin \left (d x + c\right ) - e\right )}}\right ) \cos \left (d x + c\right ) + a^{2} \sqrt {e} \cos \left (d x + c\right ) \log \left (\frac {e \cos \left (d x + c\right )^{4} - 72 \, e \cos \left (d x + c\right )^{2} - 8 \, {\left (7 \, \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 8\right )} \sin \left (d x + c\right ) - 8\right )} \sqrt {e \sin \left (d x + c\right )} \sqrt {e} - 28 \, {\left (e \cos \left (d x + c\right )^{2} - 2 \, e\right )} \sin \left (d x + c\right ) + 72 \, e}{\cos \left (d x + c\right )^{4} - 8 \, \cos \left (d x + c\right )^{2} + 4 \, {\left (\cos \left (d x + c\right )^{2} - 2\right )} \sin \left (d x + c\right ) + 8}\right ) + 4 \, \sqrt {e \sin \left (d x + c\right )} a^{2} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )}\right ] \]

[In]

integrate((a+a*sec(d*x+c))^2*(e*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/4*(2*I*sqrt(2)*a^2*sqrt(-I*e)*cos(d*x + c)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(d*x + c) + I
*sin(d*x + c))) - 2*I*sqrt(2)*a^2*sqrt(I*e)*cos(d*x + c)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(d
*x + c) - I*sin(d*x + c))) - 2*a^2*sqrt(-e)*arctan(1/4*(cos(d*x + c)^2 - 6*sin(d*x + c) - 2)*sqrt(e*sin(d*x +
c))*sqrt(-e)/(e*cos(d*x + c)^2 - e*sin(d*x + c) - e))*cos(d*x + c) + a^2*sqrt(-e)*cos(d*x + c)*log((e*cos(d*x
+ c)^4 - 72*e*cos(d*x + c)^2 - 8*(7*cos(d*x + c)^2 - (cos(d*x + c)^2 - 8)*sin(d*x + c) - 8)*sqrt(e*sin(d*x + c
))*sqrt(-e) + 28*(e*cos(d*x + c)^2 - 2*e)*sin(d*x + c) + 72*e)/(cos(d*x + c)^4 - 8*cos(d*x + c)^2 - 4*(cos(d*x
 + c)^2 - 2)*sin(d*x + c) + 8)) + 4*sqrt(e*sin(d*x + c))*a^2*sin(d*x + c))/(d*cos(d*x + c)), 1/4*(2*I*sqrt(2)*
a^2*sqrt(-I*e)*cos(d*x + c)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(d*x + c) + I*sin(d*x + c))) -
2*I*sqrt(2)*a^2*sqrt(I*e)*cos(d*x + c)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(d*x + c) - I*sin(d*
x + c))) - 2*a^2*sqrt(e)*arctan(1/4*(cos(d*x + c)^2 + 6*sin(d*x + c) - 2)*sqrt(e*sin(d*x + c))*sqrt(e)/(e*cos(
d*x + c)^2 + e*sin(d*x + c) - e))*cos(d*x + c) + a^2*sqrt(e)*cos(d*x + c)*log((e*cos(d*x + c)^4 - 72*e*cos(d*x
 + c)^2 - 8*(7*cos(d*x + c)^2 + (cos(d*x + c)^2 - 8)*sin(d*x + c) - 8)*sqrt(e*sin(d*x + c))*sqrt(e) - 28*(e*co
s(d*x + c)^2 - 2*e)*sin(d*x + c) + 72*e)/(cos(d*x + c)^4 - 8*cos(d*x + c)^2 + 4*(cos(d*x + c)^2 - 2)*sin(d*x +
 c) + 8)) + 4*sqrt(e*sin(d*x + c))*a^2*sin(d*x + c))/(d*cos(d*x + c))]

Sympy [F]

\[ \int (a+a \sec (c+d x))^2 \sqrt {e \sin (c+d x)} \, dx=a^{2} \left (\int \sqrt {e \sin {\left (c + d x \right )}}\, dx + \int 2 \sqrt {e \sin {\left (c + d x \right )}} \sec {\left (c + d x \right )}\, dx + \int \sqrt {e \sin {\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )}\, dx\right ) \]

[In]

integrate((a+a*sec(d*x+c))**2*(e*sin(d*x+c))**(1/2),x)

[Out]

a**2*(Integral(sqrt(e*sin(c + d*x)), x) + Integral(2*sqrt(e*sin(c + d*x))*sec(c + d*x), x) + Integral(sqrt(e*s
in(c + d*x))*sec(c + d*x)**2, x))

Maxima [F]

\[ \int (a+a \sec (c+d x))^2 \sqrt {e \sin (c+d x)} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt {e \sin \left (d x + c\right )} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^2*(e*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^2*sqrt(e*sin(d*x + c)), x)

Giac [F]

\[ \int (a+a \sec (c+d x))^2 \sqrt {e \sin (c+d x)} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt {e \sin \left (d x + c\right )} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^2*(e*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^2*sqrt(e*sin(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int (a+a \sec (c+d x))^2 \sqrt {e \sin (c+d x)} \, dx=\int \sqrt {e\,\sin \left (c+d\,x\right )}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2 \,d x \]

[In]

int((e*sin(c + d*x))^(1/2)*(a + a/cos(c + d*x))^2,x)

[Out]

int((e*sin(c + d*x))^(1/2)*(a + a/cos(c + d*x))^2, x)